Search
๐ŸŒ

b3.4_5.1_1.1____2.1.1. title: The result of the inner product must be greater than zero if the vector is not zero. This can be related to the length of a vector and is very useful when trying to understand abstract vector spaces.

์ƒ์„ฑ
prev summary
๐Ÿš€ prev note
next summary
๐Ÿš€ next note
โ™ป๏ธ next note
๐Ÿ’ก ์•„์ด๋””์–ด์กฐ๊ฐ
11 more properties
The result of the inner product must be greater than zero if the vector is not zero.
vโ‰ 0โ‡’โŸจv,vโŸฉ>0\mathrm{v \neq 0 \Rightarrow \lang{v,v}\rang > 0}
This condition for a inner product can be related to the length of a vector(from2) and is very useful when trying to understand abstract vector spaces.
Example 1. Let E=R2[x]E = \mathbb{R}_2[x](from4) and the mapping Eร—Eโ†ฆRE \times E \mapsto \mathbb{R} is defined by:
โŸจP,GโŸฉ=โˆซ0+โˆžP(x)Q(x)eโˆ’xdx\lang{P, G}\rang = \int^{+\infin}_0P(x)Q(x)e^{-x}dx
How can we show โŸจP,GโŸฉ\lang{P, G}\rang is an inner product over EE? If you are just understanding the inner product as โ€˜dot productโ€™ which is called โ€˜standard inner productโ€™, it might be difficult to see how we can interpret as an inner product. One of the conditions(from1) which I just mentioned in this document is particularly challenging to apply.
Pโ‰ 0โ‡’โŸจP,PโŸฉ>0\mathrm{P \neq 0 \Rightarrow \lang{P,P}\rang > 0}
Check the โ€˜customโ€™ inner product โŸจP,GโŸฉ\lang{P, G}\rang permits the condition.
โŸจP,PโŸฉ=โˆซ0+โˆžP(x)P(x)eโˆ’xdx\lang{P, P}\rang = \int^{+\infin}_0P(x)P(x)e^{-x}dx
=โˆซ0+โˆž(P(x))2eโˆ’xdx>0= \int^{+\infin}_0(P(x))^2e^{-x}dx > 0
eโˆ’xe^{-x} is greater than 00 over [0,+โˆž)[0, +\infin) and (P(x))2(P(x))^2 is greater than 00 if P(x)โ‰ 0P(x) \neq 0 over [0,+โˆž)[0, +\infin), โŸจP,GโŸฉ\lang{P, G}\rang could be an inner product.
Example 2. Let EE be the vector space of the continuous functions on [0,1][0, 1], together with the inner product.
โŸจf,gโŸฉ=โˆซ01f(t)g(t)dt\lang{f, g}\rang = \int^1_0f(t)g(t)dt
Consider the linear subspace FโŠ‚EF \subset E, how can we show this?
FโŠฅ={0E}F^\perp =\{0_E\}
Letโ€™s rewrite the FโŠฅF^\perp(from3).
FโŠฅ={gโˆˆEโˆฃโŸจf,gโŸฉ=0,โˆ€fโˆˆF}F^\perp =\{g \in E | \lang{f,g}\rang=0, {\forall}f \in F\}
Then we might see:
1.
If f(x)=0f(x) = 0 over [0,1][0, 1], gg could be anything (include 0E0_E)
2.
If f(x)โ‰ 0f(x) โ‰  0 over [0,1][0, 1], gg must be 0E0_E
To permit both conditions 1 and 2, FโŠฅF^\perp should be:
FโŠฅ={0E}F^\perp =\{0_E\}
parse me : ์–ธ์  ๊ฐ€ ์ด ๊ธ€์— ์“ฐ์ด๋ฉด ์ข‹์„ ๊ฒƒ ๊ฐ™์€ ์žฌ๋ฃŒ๋“ค.
1.
None
from : ๊ณผ๊ฑฐ์˜ ์–ด๋–ค ์ƒ๊ฐ์ด ์ด ์ƒ๊ฐ์„ ๋งŒ๋“ค์—ˆ๋Š”๊ฐ€?
3.
4.
supplementary : ์–ด๋–ค ์ƒˆ๋กœ์šด ์ƒ๊ฐ์ด ์ด ๋ฌธ์„œ์— ์ž‘์„ฑ๋œ ์ƒ๊ฐ์„ ๋’ท๋ฐ›์นจํ•˜๋Š”๊ฐ€?
1.
None
opposite : ์–ด๋–ค ์ƒˆ๋กœ์šด ์ƒ๊ฐ์ด ์ด ๋ฌธ์„œ์— ์ž‘์„ฑ๋œ ์ƒ๊ฐ๊ณผ ๋Œ€์กฐ๋˜๋Š”๊ฐ€?
1.
None
to : ์ด ๋ฌธ์„œ์— ์ž‘์„ฑ๋œ ์ƒ๊ฐ์ด ์–ด๋–ค ์ƒ๊ฐ์œผ๋กœ ๋ฐœ์ „๋˜๊ณ  ์ด์–ด์ง€๋Š”๊ฐ€?
1.
None
์ฐธ๊ณ  : ๋ ˆํผ๋Ÿฐ์Šค
1.
None