/
Search
📖

chatper6, Now that the monitor is available, use the suggest_baseline() method to produce a default baseline for the model … There should be two files saved in the configured S3 bucket: constraints.json and statistics.json.

출처
수집시간
2023/01/06 07:25
연결완료
1 more property
from sagemaker.model_monitor.dataset_format import DatasetFormat from sagemaker import get_execution_role s3_path = "s3://monitoring/xgb-churn-data" monitor.suggest_baseline( baseline_dataset=s3_path + "/training-dataset.csv", dataset_format=DatasetFormat.csv(header=True), output_s3_uri=s3_path + "/baseline/", wait=True)
Python
복사