Search
๐ŸŒ

bd3__1.1__2. title: The pointwise convergence condition is limited in that it does not consider specific points of discontinuity, thus requiring a stronger condition of convergence. One such condition is uniform convergence.

์ƒ์„ฑ
prev summary
๐Ÿš€ prev note
โ™ป๏ธ prev note
next summary
๐Ÿš€ next note
โ™ป๏ธ next note
๐Ÿ’ก ์•„์ด๋””์–ด์กฐ๊ฐ
11 more properties
The pointwise convergence(from2) condition is limited in that it does not consider specific points of discontinuity, thus requiring a stronger condition of convergence. One such condition is uniform convergence(from3).
For example:
1.
The sequence of functions fnf_n converges pointwise to ff. Although fnf_n is continuous for every possible nn, the pointwise limit function ff is not continuous(์ฐธ๊ณ 2).
fn(x)=nxnx+1,ย xโˆˆ[0,1]f_n(x)=\frac{nx}{nx+1},\ x\in[0,1]
f(x)=0ย (x=0),ย f(x)=1ย (xโ‰ 0)f(x) = 0\ (x=0),\ f(x)=1\ (x\neq0)
2.
The function FF generated by the series of functions converges pointwise to the continuous original function ff, but the generated function FF is not continuous(์ฐธ๊ณ 1).
f(x)=x2,ย xโˆˆ[โˆ’ฯ€,ฯ€]f(x) = \frac{x}{2},\ x\in[-\pi,\pi]
F(x)=โˆ‘n=1โˆž(โˆ’1)n+1sinโก(nx)nF(x)=\sum_{n=1}^{\infin}{(-1)^{n+1}\frac{\sin(nx)}{n}}
parse me : ์–ธ์  ๊ฐ€ ์ด ๊ธ€์— ์“ฐ์ด๋ฉด ์ข‹์„ ๊ฒƒ ๊ฐ™์€ ์žฌ๋ฃŒ๋“ค.
1.
None
from : ๊ณผ๊ฑฐ์˜ ์–ด๋–ค ์ƒ๊ฐ์ด ์ด ์ƒ๊ฐ์„ ๋งŒ๋“ค์—ˆ๋Š”๊ฐ€?
1.
2.
3.
supplementary : ์–ด๋–ค ์ƒˆ๋กœ์šด ์ƒ๊ฐ์ด ์ด ๋ฌธ์„œ์— ์ž‘์„ฑ๋œ ์ƒ๊ฐ์„ ๋’ท๋ฐ›์นจํ•˜๋Š”๊ฐ€?
1.
None
opposite : ์–ด๋–ค ์ƒˆ๋กœ์šด ์ƒ๊ฐ์ด ์ด ๋ฌธ์„œ์— ์ž‘์„ฑ๋œ ์ƒ๊ฐ๊ณผ ๋Œ€์กฐ๋˜๋Š”๊ฐ€?
1.
None
to : ์ด ๋ฌธ์„œ์— ์ž‘์„ฑ๋œ ์ƒ๊ฐ์ด ์–ด๋–ค ์ƒ๊ฐ์œผ๋กœ ๋ฐœ์ „๋˜๊ณ  ์ด์–ด์ง€๋Š”๊ฐ€?
1.
None
์ฐธ๊ณ  : ๋ ˆํผ๋Ÿฐ์Šค